Beam-Beam Simulation with Electron Lens at RHIC

Hyung Jin Kim and Tanaji Sen Fermilab

CM12, Apr 9, 2009

Motivation

- To compensate large tune spread and emittance growth due to head-on interactions in proton-proton run at RHIC, an electron lens with a Gaussian transverse profile was proposed.
- Using a weak-strong code BBSIMC, we investigate effects of electron lens on tune change and beam loss.
 - Figures of merit:
 - tune footprint
 - Dynamic aperture
 - Tune diffusion
 - Particle losses

MODEL: Electron lens simulation at RHIC

- 250 Gev p-p beam
- 2 head-on (IP6 & 8), beta = 0.5m
- Beam intensity: 2E11 per bunch
- Working point: (0.695,0.685)
- 1 e-lens at IP10, beta = 10m
- NL: sextupoles/IR multipoles

BBSIMC

- 6D weak-strong tacking code
- Linear transfer matrices bywn nonlinear elements
- E-lens is considered as a thin element
 - Gaussian electron beam
 - Smooth Edge Flat Top (SEFT)
- http://www-ap.fnal.gov/~hjkim

Electron Lens Requirement

For full tune-spread compression

- Electron beam profile should match proton profile at IP (Gaussian)
- Electron beam intensity should be Ne = N_ip * Np; N_ip=2, Np=2E11
- Full tune-spread compression does not help to reduce particle loss (BBSIMC, LIFETRAC, SIXTRACK)

For reduction of particle loss

- Electron beam profile should match proton profile for tune compression, but other profiles may be more suitable for reducing particle loss.
- Electron beam intensity may be different from N_ip *
 Np

Electron beam profiles

1 sigma Gaussian

- $\exp(-0.5(r/sigma)**2)$
- match to proton beam size

2 sigma Gaussian

- exp(-0.5(r/2sigma)**2)

Smooth Edge Flattop

- 1/(1+(r/4sigma)**8)

Gaussian Electron Lens (1 sigma)

1x bbc fully compensates footprint Footprint folding is observed.

DA is increased at 1/8x bbc

1x bbc = beam-beam compensation with Ne = Nip * Np = 2*2E11

Gaussian Electron Lens (1 sigma)

- Tune Diffusion: tune change btwn first and second 1024 turns
 - $DQ = sqrt(dQx^2 + dQy^2)$
- 1x bbc: decrease tune change at small amp. but increase at large amp.
- 1/8x bbc: decrease tune change at both small and large amp.

Gaussian Electron Lens (1 sigma)

Particle loss

- Small Ne reduces beam loss: Ne < 0.5 Nip * Np
 - (loss with 1x bbc)/(loss with NO bbc) ~ 600%
- (loss with 1/8x bbc)/(loss with NO bbc) ~ 30%

Gaussian Electron Lens (2 sigma)

DA is increased at 1/2x bbc

 Peak of 4x bbc electron beam profile is matched to that of 1x bbc at 1 sigma Gaussian.

Gaussian Electron Lens (2 sigma)

Tune Diffusion

- 4x bbc: decrease tune change at small amp. but increase at large amp.
- 1/2x bbc: decrease tune change at both small and large amp.

Gaussian Electron Lens (2 sigma)

Particle loss

- Small Ne reduces beam loss:
 - (loss with 1/2x bbc)/(loss with NO bbc) ~ 10%

SEFT Electron Lens (4 sigma)

- Shape of footprint with compensation is almost the same as without compensation.
- Dynamic aperture is almost the same up to 2x bbc.

SEFT Electron Lens (4 sigma)

Tune Diffusion

- 4x bbc: decrease tune change at small amp. but increase at large amp.
- 1/2x bbc: decrease tune change at both small and large amp.

SEFT Electron Lens (4 sigma)

Particle loss

- Small Ne reduces beam loss:
 - (loss of 1/2x bbc)/(loss of NO bbc) ~ 10%

Comparison of electron beam distributions

Profile	Intensity (N_ip*Np)	Dynamic aperture (sigma)	Particle loss (Relative to NO elens)
1 sigma Gaussian	1/2	5.10	115%
	1/4	5.44	63%
	1/8	5.63	30%
2 sigma Gaussian	2	5.05	10%
	1	5.40	8%
	1/2	5.63	6%
SEFT	2	4.77	22%
	1	5.47	6%
	1/2	5.57	6%

 Particle loss is relatively insensitive to electron lens current variations below threshold current with 2 sigma Gaussian and SEFT

Summary

- Full tune-spread compression also causes footprint folding and increases particle loss. Partial tune-spread compression without inducing footprint folding may reduce particle loss.
- Tune diffusion is closely related to particle loss.

There is a threshold electron beam intensity below which beam life

time is increased

Profile	Threshold (N_ip*Np)
1 sigma G	0.5
2 sigma G	2
SEFT	4

- Particle losses for 2 sigma Gaussian and SEFT profiles are relatively insensitive to intensities below threshold.
- Wider electron beam profile than proton at elens location is found to increase beam life time. Validation with better statistics in progress.